伺服技術(shù)是現(xiàn)代工業(yè)重要的支柱性技術(shù),隨著近年來不斷的發(fā)展,交流伺服在很多場合逐步取代了以往的直流伺服技術(shù),而三相交流永磁同步電動機(Permanent Magnet Synchronous Motor,簡稱PMSM)是交流永磁伺服電動機的一種,隨著永磁體性能的提高和價格的下降,以及由永磁取代繞線式轉(zhuǎn)子中的勵磁繞組所帶來的一系列優(yōu)點如轉(zhuǎn)子無發(fā)熱問題、控制系統(tǒng)簡單、具有較高的運行效率和較高的運行速度等等。在數(shù)控機床,機器人等小功率應(yīng)用場合,已獲得了廣泛應(yīng)用。
隨著現(xiàn)代工業(yè)對精密化、高速化、高性能的要求的不斷發(fā)展,傳統(tǒng)的控制器在高要求的場合已經(jīng)不能夠勝任,在很多要求高實時性,高效率的場合,就必須要用專門的數(shù)字信號處理器(DSP)來代替?zhèn)鹘y(tǒng)的控制器的部分功能。特別是在控制算法復(fù)雜或?qū)λ惴ㄟM行改進優(yōu)化的時候,DSP獨特的快速計算的能力就明顯的體現(xiàn)出來。
另外,隨著集成電路制造技術(shù)的進步和電力電子技術(shù)的發(fā)展,交流伺服也得到了長足的發(fā)展。集三相逆變器和保護電路、隔離電路、能耗制動電路等功能為一體的智能功率模塊、先進的電力電子器件的出現(xiàn)、使交流伺服控制更方便、功耗更低、開關(guān)時間更短、變頻范圍更寬、性能更優(yōu)越。這些都使交流伺服相對直流伺服體現(xiàn)出了明顯的優(yōu)越性。
系統(tǒng)概述
交流伺服數(shù)字化系統(tǒng)的硬件由DSP作為信號處理器,用旋轉(zhuǎn)編碼器和電流傳感器提供反饋信號,智能功率模塊IPM作為逆變器,經(jīng)傳感器出來的信號經(jīng)過濾波整形等處理后反饋給DSP進行運算,DSP經(jīng)過對參考信號和反饋信號的處理運算來調(diào)節(jié)伺服系統(tǒng)的電流環(huán),速度環(huán),和位置環(huán)的控制,最后輸出PWM信號經(jīng)過隔離驅(qū)動IPM模塊實現(xiàn)電機的伺服閉環(huán)控制。 系統(tǒng)的硬件結(jié)構(gòu)如圖1所示。
圖1 硬件結(jié)構(gòu)圖
系統(tǒng)的控制為三環(huán)控制方式,位置控制是外環(huán),也是最終目標,速度控制是中環(huán),電流控制是內(nèi)環(huán)。為了保證動態(tài)響應(yīng)速度和定位時不產(chǎn)生震蕩,電流環(huán)和速度環(huán)均采用PID調(diào)節(jié),位置調(diào)節(jié)器采用PI調(diào)節(jié)。系統(tǒng)的控制框圖如圖2:
圖2 控制系統(tǒng)框圖
編碼器檢測的轉(zhuǎn)子位置實際信號與系統(tǒng)給定位置信號進行比較,比較后的差值經(jīng)位置調(diào)節(jié)器PI調(diào)節(jié)后輸出轉(zhuǎn)子轉(zhuǎn)速給定信號,給定轉(zhuǎn)速信號再與編碼器檢測的實際速度信號進行比較,比較后的差值經(jīng)速度調(diào)節(jié)器調(diào)節(jié)后,輸出給定電流指令值,在于電流反饋實際值比較后進行PWM控制。
矢量控制
在同步電機中,勵磁磁場與電樞磁通勢間的空間角度不是固定的,因此調(diào)節(jié)電樞電流就不能直接控制電磁轉(zhuǎn)矩。通過電機的外部控制系統(tǒng),對電樞磁通勢相對勵磁磁場進行空間定向控制,控制兩者之間的角度保持固定值,同時對電樞電流的幅值也進行控制,這種控制方式就稱為矢量控制。
矢量控制也就是通過控制兩相的轉(zhuǎn)子參考坐標d-q軸的電流來等效控制電樞的三相電流。通過前面的系統(tǒng)控制框圖可以清楚理解這種等效,可以用下面的公式表示:
(1)
由電機非負載軸端安裝的編碼器隨時檢測轉(zhuǎn)子磁極位置,不斷的取得位置角信息,通過檢測實時的知道了θ,也就是說能夠進行實時的坐標變化,變換后的電流對逆變器進行控制,產(chǎn)生PWM波形去控制電機。
位置及速度的檢測
交流伺服電機內(nèi)裝有編碼器進行位置及速度的測量,大多數(shù)情況下,直接從編碼器出來的信號波形不規(guī)則,還不能直接用于控制,信號處理和遠距離傳輸,所以要對信號進行整形和濾波變成矩形波后再反饋給DSP,處理后的兩路相互正交的編碼器信號A、B經(jīng)過電壓變換直接送入DSP的QEP引腳,經(jīng)譯碼邏輯單元產(chǎn)生轉(zhuǎn)向信號和4倍頻的脈沖信號。轉(zhuǎn)向信號是根據(jù)兩路信號的相位超前滯后決定的。由于存在正反轉(zhuǎn)的問題,要求計數(shù)器具有可逆性,所以把通用定時器2設(shè)置為定向增減計數(shù)模式,把倍頻后的正交編碼脈沖作為定時器2的輸入時鐘進行計數(shù),計數(shù)的方向由轉(zhuǎn)向信號決定,如果QEP1的輸入相位超前,則增計數(shù),反之則減計數(shù)。位置和轉(zhuǎn)速由脈沖數(shù)和脈沖頻率就可以決定。 每轉(zhuǎn)的總脈沖數(shù)用M表示,T1時刻的脈沖數(shù)為m1,則電機轉(zhuǎn)過的角度就可以根據(jù)下式計算出來。
(2)
如果是多轉(zhuǎn)的情況下,再配合編碼器的Z相零位脈沖的計數(shù)值和相應(yīng)定時器2的清零,就可以知道電機軸轉(zhuǎn)了多少圈多少角度了。電機轉(zhuǎn)子轉(zhuǎn)速的計算可以根據(jù)MT測速法,確定編碼器的速度公式如下:
(3)
M1—定時間內(nèi)計數(shù)器記錄的編碼器脈沖數(shù);
M2—定時間內(nèi)記錄的DSP的時鐘脈沖數(shù);
N—編碼器線數(shù),也就是
倍頻前的編碼器的脈沖數(shù);
Fclk—DSP的時鐘脈沖頻率。
結(jié)語
綜上所述,本文研究的數(shù)字交流伺服驅(qū)動器,實行了模塊化設(shè)計,硬件結(jié)構(gòu)簡單,軟件編程容易?梢暂p松實現(xiàn)PC機或者PLC與控制器的通信,這樣就實現(xiàn)了上位機能夠接受控制系統(tǒng)的實時參數(shù)和向伺服控制系統(tǒng)傳遞參數(shù),對伺服系統(tǒng)進行直接的控制。